SALAD: Improving Robustness and Generalization through Contrastive Learning with Structure-Aware and LLM-Driven Augmented Data

Suyoung Bae¹, Hyojun Kim², YunSeok Choi^{1*}, Jee-Hyong Lee^{1*}

1. Problem: Spurious Correlations in NLP tasks

- Spurious correlation occurs when some variable and label appear strongly related, but there's no genuine causal relationship.
- > Scenario: When we use a movie review dataset to perform a sentiment analysis task, where the dataset frequently mentions the famous director "Spielberg" in positive contexts.

2. Task & Overview

Task Objective:

Effectively reduce spurious correlation in various NLP tasks using contrastive learning without any additional dataset

Overview:

- [1] Extracting critical & non-critical structures in each task
- [2] Using non-critical structures to generate positive data
- [3] Using critical structures to generate negative data
- [4] Contrastive Learning for effective training

3. Proposed Method: SALAD

4. Experiment Results

Table 1] Task1: Sentiment Classification Task

Methods	In-Domain Dataset		Out-of-Distribution Dataset				Overall
	O-Test	CF-Test	YELP	SST2	FindFood	Tweet	
Standard Fine-Tuning (full-data) RoBERTa-large (Liu et al., 2019)	94.13	92.28	94.85	79.41	95.24	73.04	88.16
Robust Learning							
SupCon (Gunel et al., 2021)	93.85	88.11	95.26	86.20	95.32	74.90	88.94
C2L (Choi et al., 2022)	93.37	93.03	93.19	79.90	94.26	68.85	87.10
Text Data Augmentation							
EDA (Wei and Zou, 2019)	93.58	93.72	95.28	89.73	95.40	81.24	91.49
SSMBA (Ng et al., 2020)	93.60	92.69	95.90	89.40	96.12	78.75	91.08
AugGPT (Dai et al., 2023)	93.37	91.46	95.32	90.21	94.18	78.66	90.53
Counterfactual Data Augmentation							
Human-CAD (Kaushik et al., 2020)	93.17	95.47	92.16	88.65	94.26	80.66	90.73
CORE-CAD (Dixit et al., 2022)	91.73	95.15	89.70	90.10	93.06	86.77	91.09
SALAD	93.78	95.90	94.99	92.68	95.58	<u>85.35</u>	93.05

[Table 3] Task 3: Natural Language Inference

Methods	In-D	omain	Out-of-D	Overall	
	O-test	CF-test	MNLI ¹	MNLI ²	
Standard Fine-Tuning (full-data)					
RoBERTa-large (Liu et al., 2019)	87.50	69.90	73.27	73.97	<u>76.16</u>
Robust Learning					
SupCon (Gunel et al., 2021)	86.42	60.03	64.70	64.39	68.89
C2L (Choi et al., 2022)	87.96	68.49	72.18	72.74	75.34
Text Data Augmentation					
EDA (Wei and Zou, 2019)	86.59	67.58	70.93	71.12	74.06
SSMBA (Ng et al., 2020)	87.16	63.54	72.03	72.95	73.92
AugGPT (Dai et al., 2023)	86.92	69.61	<u>73.62</u>	<u>74.38</u>	76.13
Counterfactual Data Augmentation					
Human-CAD (Kaushik et al., 2020)	88.25	71.60	71.74	71.47	75.76
CORE-CAD (Dixit et al., 2022)	64.65	57.26	62.60	62.98	61.88
DISCO (Chen et al., 2023)	79.84	<u>78.66</u>	68.42	67.60	73.63
SALAD	88.40	80.91	74.06	74.93	79.57

[Table 2] Task2: Sexism Classification [Table 4] Cross-domain Task

Methods	11	DD	ODD	Overall	
1110110110	O-Test	O-Test CF-Test			
RoBERTa-large	92.69	49.23	81.00	72.49	
SupCon	91.79	22.56	76.28	60.84	
C2L	93.21	37.69	77.92	67.18	
EDA	91.67	37.69	81.59	67.74	
SSMBA	92.82	25.64	79.36	63.02	
AugGPT	92.31	29.23	78.83	64.08	
Human-CAD	91.79	91.80	83.11	89.47	
SALAD	93.07	88.47	83.38	88.31	

Methods	$S \rightarrow I$	$S \to F$	$\mid I \rightarrow S$	$I \to F$	$F {\to} S$	$F \to I$	Overall
Standard Fine-Tuning (full-data) RoBERTa-large (Liu et al., 2019)	91.67	93.08	89.16	91.13	82.48	90.22	89.62
Robust Learning SupCon (Gunel et al., 2021) C2L (Choi et al., 2022)	90.82 90.52	89.64 91.61	91.21 89.90	94.95 94.64	73.40 81.18	89.68 90.50	88.28 89.72
Text Data Augmentation EDA (Wei and Zou, 2019) SSMBA (Ng et al., 2020)	91.64 90.71	93.51 90.78	90.76 94.21	94.12 93.96	80.18 78.75	89.29 89.31	89.92 89.62
SALAD	92.41	94.19	90.88	94.96	86.00	91.25	91.61

5. Conclusions

- 1. Improved training robustness by enabling the model to learn structural patterns and apply contrastive learning.
- 2. Achieved generalizability by performing well on out-ofdistribution domains.
- 3. Ensured consistent performance across a variety of sentence structures by enabling the model to learn structural patterns where shortcuts occur.

More Information

